31 research outputs found

    End-to-end Neural Coreference Resolution

    Full text link
    We introduce the first end-to-end coreference resolution model and show that it significantly outperforms all previous work without using a syntactic parser or hand-engineered mention detector. The key idea is to directly consider all spans in a document as potential mentions and learn distributions over possible antecedents for each. The model computes span embeddings that combine context-dependent boundary representations with a head-finding attention mechanism. It is trained to maximize the marginal likelihood of gold antecedent spans from coreference clusters and is factored to enable aggressive pruning of potential mentions. Experiments demonstrate state-of-the-art performance, with a gain of 1.5 F1 on the OntoNotes benchmark and by 3.1 F1 using a 5-model ensemble, despite the fact that this is the first approach to be successfully trained with no external resources.Comment: Accepted to EMNLP 201

    Crowdsourcing Question-Answer Meaning Representations

    Full text link
    We introduce Question-Answer Meaning Representations (QAMRs), which represent the predicate-argument structure of a sentence as a set of question-answer pairs. We also develop a crowdsourcing scheme to show that QAMRs can be labeled with very little training, and gather a dataset with over 5,000 sentences and 100,000 questions. A detailed qualitative analysis demonstrates that the crowd-generated question-answer pairs cover the vast majority of predicate-argument relationships in existing datasets (including PropBank, NomBank, QA-SRL, and AMR) along with many previously under-resourced ones, including implicit arguments and relations. The QAMR data and annotation code is made publicly available to enable future work on how best to model these complex phenomena.Comment: 8 pages, 6 figures, 2 table

    Electrical resistance of CNT-PEEK composites under compression at different temperatures

    Get PDF
    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure
    corecore